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In 1871, the political economist and logician William Stanley Jevons published a paper in
Nature describing the results of a bean-counting experiment in which he was the sole participant.
His goal was to determine “how many objects the mind can apprehend at once,” which he tested
by repeatedly tossing beans into a bucket and estimating their quantity. His experiment revealed
several puzzling behavioral patterns that have since been replicated innumerable times. First,
there is a sharp cut-off at about four objects, now called the “subitizing range,” below which
estimation is error-free. Beyond that cutoff, imprecision in estimation grows with magnitude —
specifically, the standard deviation of estimates grows almost exactly linearly. Larger quantities
are also underestimated, with the degree of underestimation increasing as a function of quantity.
Data from Jevons’ experiment have been re-plotted and are shown in Figure 1.

Jevons’ results were published 150 years ago, but the study of innate numerical capacities has
retained substantial interest in recent decades (Dehaene, 2011). There are several reasons for
this, including: that basic numerical abilities seem to be present even in simple animals and are
observed early in human development; that numerosity seems to be a primary perceptual attribute
(Burr & Ross, 2008; Ross & Burr, 2010), susceptible to adaptation; that number psychophysics are
unique among visual summary statistics in their discontinuity below and above four objects (Revkin
et al., 2008); and that innate numerical abilities have been central to developmental theories of
counting acquisition and other learned numerical abilities (Carey, 2009; Gelman & Gallistel, 1978;
Wynn, 1992). The literature on numerical cognition in general, and visual numerosity perception
in particular, is therefore quite substantial — and the psychophysics of numerosity perception are
accordingly well-characterized.

This thesis contains experiments, models, and analyses that are centered on understanding
the functional and mechanistic origins of observed number psychophysics. The findings presented
here challenge some widely held assumptions and offer new ways of understanding some of the
most puzzling phenomena. For instance, our results indicate that estimation is not at all a static
and parallel process, as is commonly believed, but is actually the result of a serial accumulation
process operating over saccades. We also present evidence that the discontinuity in estimation
below and above four objects — generally held to be the result of two separate representational
systems (Carey, 2009; Feigenson et al., 2004) — is in fact an efficient representation of quantity in
a single system. Finally, our results show that subitizing, Weber’s law, underestimation, and other
key psychophysics are not due to properties of a number system (or systems), but rather emerge
from lower-level perceptual uncertainty.
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Figure 1: Data from Jevons (1871), showing the distribution of his estimates (y-axis) for each actual quantity
of beans thrown (x-axis), with the size of the square proportional to how many times that number-estimate pair
occurred.

The visual mechanics of estimation
Approximate numerical estimation is widely held to be a static, parallel, and nearly immediate
process (Anobile et al., 2014; Dehaene, 1997; Revkin et al., 2008) — assumptions baked into nearly
all computational models of numerosity perception (e.g. Dehaene & Changeux, 1993; Stoianov &
Zorzi, 2012; Testolin et al., 2020; Verguts & Fias, 2004; Zorzi & Testolin, 2018). This view is sup-
ported by response times: whereas counting takes around 300ms per enumerated item, approximate
number computations can take as little as 16ms independent of the number of objects (Inglis &
Gilmore, 2013). Additionally, populations of neurons have been identified that respond similarly to
sequentially and simultaneously-presented numerosities in monkeys (Nieder et al., 2006), which has
been taken as evidence that approximate number representations are not the result of sequential
processing.

However, recent evidence has muddied the simple picture of numerical estimation. Several
studies have shown that individuals’ Weber fractions are highly task-dependent, differing between
estimation and discrimination tasks (e.g. Guillaume & Gevers, 2016; Price et al., 2012). In fact,
Weber fractions have poor re-test reliability even when measured using the same task (Inglis &
Gilmore, 2014). Numerical estimates have also been found to be influenced by non-numerical
features of stimuli, such as the degree of clustering in a scene (Im et al., 2016). Finally, the
precision of numerical estimates is known to improve as stimuli are presented for a longer duration
(Inglis & Gilmore, 2013), suggesting that estimation may involve some type of temporal process.

Chapter 2 is an attempt to understand these temporal dynamics and the visual mechanics
that underlie them. We ran estimation and discrimination tasks in which participants made non-
symbolic numerosity judgments at different exposure durations and, critically, collected visual
fixation data using an eye-tracker so that we could measure how participants’ estimates were
influenced by their path of visual fixations. We found that both mean estimates and the precision
of estimates are strongly influenced by time, such that participants are biased to underestimate at
short exposure durations and highly imprecise, but become increasingly un-biased and precise at
longer exposure times, indicative of sequential (non-parallel) processing.

However, the effects of time appear to be almost entirely driven by visual fixations: as people
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Figure 2: Example fixation paths of one subject in the 3-second time condition, with each panel representing a
single trial. The points represent the dots displayed on their screen, where filled dots represent the ones that were
foveated. At the bottom of each panel, a label N/F/E shows how many dots were shown (N), how many were
foveated (F ) and what quantity the participant actually estimated (E).

foveate an increasing number of objects, their mean estimates are driven up and their uncertainty
is driven down. Figure 2 shows four example trials with participants’ fixation paths across a
scene containing multiple objects. The bottom of each panel shows the total number of points on
the screen, the number of points that participants fixated, and the number they they ultimately
estimated. There is a striking correspondence between how many points people fixated and their
estimates, as if people are simply using an approximate count of the objects they happened to
foveate to guide their estimate — without even adjusting for the area they did not fixate.

We used a statistical model to quantify the contribution of foveal, peripheral, and multiply-
fixated dots in an array that, perhaps surprisingly, supports this interpretation. Freely fit pa-
rameters from our model indicate that foveated points contribute twice as much to a numerical
estimate as peripheral ones. The analysis also revealed that estimates do not seem to be adjusted
for the area of the screen that participants happened to fixate. Our results therefore suggest that
estimation seems to be largely a simple process of serial accumulation of quantity across saccades.
Our findings challenge the standard view of estimation as a static, pre-attentive, and parallel visual
process, and imply that models of estimation that do not account for temporal dynamics — such
as those based on feedforward neural networks (e.g. Dehaene & Changeux, 1993; Stoianov & Zorzi,
2012; Testolin et al., 2020; Verguts & Fias, 2004; Zorzi & Testolin, 2018) — will be unable to
account for a large portion of the variance in estimation.

A unifying account of small and large number perception
Kaufman et al. (1949) delineated three distinct modes of enumeration: counting, subitizing, and
estimating. Counting, of course, is a learned, serial procedure for exactly determining how many
objects are in a set of arbitary size. Subitizing and estimation, on the other hand, are distinguished
from counting as innate processes of enumeration that can operate in parallel over a visual field.
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Subitizing, a term they coined from the Latin word subitare meaning “to arrive suddenly,” is the
fast and accurate mode of apprehending small quantities. They considered the quantity of sets
with six or fewer members to be “subitized” rather than “estimated.” Estimation, on the other
hand, is a less accurate and somewhat slower mode of determining the numerosity of larger sets.
They speculated, based on data regarding participants’ reaction times, accuracy, and confidence in
quantity estimation, that there is some mechanistic distinction between subitizing and estimation.
They wrote,

The two terms differ in meaning, because to produce the process of estimating we
present more than 6 dots; to produce subitizing we present 6 or less. This difference
is surely an identifiable difference in operations. It might be a trivial difference, but
the results tell us that it is not. If no discontinuities had appeared in the results, no
distinction between subitizing and estimating could have been drawn.

Though the subitizing range is now considered to be four rather than six, the idea that there are
two operational modes of determining a set’s quantity (other than counting) is widely accepted.
Furthermore, Kaufman et al.’s suggestion that these modes reflect different underlying cognitive
mechanisms has gained widespread support as well. On one prominent account, we have two innate
systems that allow us to represent numerical information (Dehaene, 1997; Feigenson et al., 2004;
Trick & Pylyshyn, 1994). The first is the “parallel individuation” system, which allows us to attend
to and track up to four objects. This slot-like tracking mechanism is what allows for rapid, exact
enumeration of small quantities. The second is the “approximate number system,” which is a noisy,
analog system for representing numerosity in sets when their size exceeds the limits of the parallel
individuation system.
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Figure 3: Distributions Q(k|n) of responses (k) given a number of objects presented (n) under three models.
Probabilities (y-axis) of estimates (x-axis) are shown for numerosities 1-9 (colors). Panel (a) shows the form of a
precise estimation system, panel (b) shows the form of a scale variable estimation system, and panel (c) shows them
combined.

The psychophysics of estimation resulting from the parallel individuation system and the ap-
proximate number system are illustrated in Figure 3. Each line represents the probability density
Q(k | n) over estimates (k) given a number of objects presented (n). Given n = 1...4 objects, the
parallel individuation system exactly tracks them and thus estimation will be perfectly accurate,
illustrated by the delta function probability density curves in Figure 3a. However, it is unable to
represent sets beyond n = 4. The approximate number system (exemplified by 3b), on the other
hand, is analog, continuous, and unbounded but represents each subsequent numerosity with de-
creasing precision. A popular model of the approximate number system assumes that estimates are
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Figure 4: The probability (y-axis) of numeric responses (x-axis) over presentation times (faceted)
for N=3, N=6, and N=9. Bars are shown for the human data and lines are shown for the model
predictions.

drawn from, k ∼ N (n,w ·n). This model of large number estimation has the standard deviation
of estimates increasing at a rate w per object shown, where the constant w is called a person’s
“Weber fraction.”

Chapter 3 addresses the origins of small- and large-number psychophysics, centering on the cu-
rious discontinuity in estimation error between four and five objects1. We take as a starting point
the natural “need probability” (Anderson & Schooler, 1991) of number, which robustly follows a
1/n2 power-law in both number words (Dehaene & Mehler, 1992; Piantadosi & Jacobs, 2016) and
how often numerosities are encountered and used for decision-making in the wild (Piantadosi &
Cantlon, 2017; Strandburg-Peshkin et al., 2015). Using optimization methods from information
theory, we derive the most efficient way to represent numerosities given a limited processing ca-
pacity (a fixed “informational budget”). Our derivation captures the core properties of number
psychophysics, including (i) nearly exact representations for small sets (Burr et al., 2010; Choo &
Franconeri, 2014; Feigenson et al., 2004; Revkin et al., 2008); (ii) scalar variability in estimation
for larger numbers (Dehaene, 2011; Xu & Spelke, 2000); (iii) an underestimation bias (Izard & De-
haene, 2008; Mandler & Shebo, 1982) that diminishes with exposure time (Cheyette & Piantadosi,
2019); (iv) large number estimation acuity that is modulated by time (Inglis & Gilmore, 2013) and
display contrast; (v) a subitizing range that is moderated by time (Mandler & Shebo, 1982) and
contrast (Melcher & Piazza, 2011); and (vi) roughly normally-shaped response distributions for
estimation (Nieder & Dehaene, 2009; Pica et al., 2004).

Beyond simply re-capitulating known psychophysics of number, the model makes testable pre-
dictions about how estimation acuity, subitizing range, and underestimation bias should depend
on the amount of information available to participants. We evaluated these predictions against
human behavior in four numerical estimation experiments, which reflect different ways of manipu-
lating available information (variable exposure time versus display contrast) and different ways of
controlling non-numerical properties of the stimuli (the average dot size, surface area, or density
of the dots). We found the the model’s predictions correspond closely to observed human number
psychophysics in each experiment. For instance, at increasingly short exposure durations, partic-
ipants’ subitizing range is gradiently reduced — from four all the way down to about one at the
shortest exposure times (or lowest color contrast) — matching a key prediction of the model.

Perhaps more importantly, the model closely matches the shape of the distribution of estimates
under different conditions. Figure 4 shows the shape of the model (line) and human (bar) response

1This work was published in Nature Human Behaviour, as Cheyette and Piantadosi (2020), and can be found at
https://www.nature.com/articles/s41562-020-00946-0.
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distributions for N = 3,6,9 at different exposure durations (facets). These make it clear that it is
not just the means and standard deviations which match closely, but rather the shape of the entire
distribution derived from the optimization.

In sum, the theory we present relies on combining an a priori biological consideration (bounded
informational capacity) with an environmental input distribution P (n) and analytically computing
the optimal internal representation. The resulting representational system replicates all of the stan-
dard properties of number psychophysics and explains them with a simple, resource-rational model.
Our experiments also show that human numerical cognition quantitatively tracks this bounded op-
timal solution as the amount of information available varies, a fact not explainable in existing
psychophysical theories. This work highlights that behavioral discontinuities are not always good
markers of distinct systems: the fact that a single optimization produces the discontinuous psy-
chophysics of number estimation implies that observing a discontinuity cannot be used as evidence
of two representational systems.

The perceptual origins of number psychophysics
A key unresolved question is whether the behavioral patterns found in the domain of number result
from numerical processing itself or from some of the perceptual processes that feed into numerical
perception. In the first case, people may posses a “number system” that itself is the origin of
phenomena seen in behavioral tasks involving number, such as Weber’s law and underestimation.
For instance, the noise and bias observed in numerical estimation might arise from a sampling
process in which numerical information is extracted from visual representations, rather than from
noise inherent to visual representations themselves (Dehaene & Changeux, 1993; Heng et al., 2020;
Woodford, 2020). Alternatively, such phenomena may emerge as a consequence of more general
visual processes which precede numerical estimation and indeed feed into it (Anobile et al., 2020;
Stoianov & Zorzi, 2012; Testolin et al., 2020; Trick & Enns, 1997; Zorzi & Testolin, 2018). Un-
der this latter hypothesis, the psychophysics of estimation in vision could result from constraints
inherent to visuospatial memory, and then we would expect that people’s behavior in visual tasks
not involving number to show equivalent hallmarks to those seen in estimation.

The model presented in Chapter 3 demonstrates that principles of efficient representations can
explain many features of number psychophysics, including the discontinuity from exactness to scalar
variability. The key idea there was that an efficient encoding of number, using at maximum some
number of bits of information, will prioritize representations of small numbers at the expense of
large numbers because people tend to need to represent small numbers more frequently (Dehaene
& Mehler, 1992; Piantadosi & Cantlon, 2017). That work therefore derived exactness for small
numbers (e.g. subitizing) and approximation for large numbers by solving a single, unifying op-
timization. However, the model did not explain the key step of how numerosities are actually
computed from visual input, and therefore does not explain where noise in representations of nu-
merosities comes from. Furthermore, that model made the unrealistic assumption that, all else
being equal, small and large numerosities are equally easy to perceive—their differing behavioral
signatures being solely a matter of frequency of use.

Chapter 4 investigates whether number psychophysics arise from one or more “number systems,”
as is commonly believed, or if they have their origins in lower-level perceptual processing 2. We
propose an adaptation of the model developed in Chapter 3, which optimally represents objects in

2This paper is currently under review. A paper containing an early version of this work won the modeling prize
in Perception and Action at the Cognitive Science Conference, where it was published in the proceedings as Cheyette
et al. (2021), and can be found at https://escholarship.org/uc/item/9hk7s32c.
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Figure 5: This figure conceptually illustrates how the model works, simplifying it to assume that there are only
4 pixels for clarity. In this example, a person sees a scene with 3 objects, which is represented as a probability
distribution over all possibilities of what she saw. Possible arrangements of objects are grouped by numerosity, shown
as different colors. To get the probability of a numerosity k, the model simply sums the probability of all possible
scenes with numerosity k, highlighted at the bottom.

space (rather than quantities) subject to an information capacity constraint. Quantities are only
implicitly represented in this model, unlike in the direct optimization of numerosity perception in
Chapter 3. However, we show that many of the important psychophysical phenomena associated
with numerical cognition — including subitizing and Weber’s law — can be derived as downstream
consequences.

The model aims to capture how an idealized, information-limited perceptual system would per-
form if its only aim was to accurately store the presence or absence of objects in various locations.
Although this formalizes the idea of object memory—not specifically numerical estimation—its
output nonetheless yields psychophysical properties seen in number. Figure 5 illustrates the basic
setup, assuming for the sake of clarity that there are only 4 possible object locations (or pixels).
When a person sees a particular scene, they encode a probability distribution over each possible
arrangement of objects, which is a weighted combination of a prior for small numbers and how well
the representation matches their observation (akin to a likelihood). This probability distribution
in turn can be converted into a probability distribution over numerosities by summing the prob-
abilities of each scene with a given number of objects. Surprisingly, it turns out that optimizing
memory to accurately remember objects’ locations results in very similar predictions about number
psychophysics as directly optimizing for numerical estimation accuracy. For instance, subitizing,
Weber’s law, underestimation, and the temporal dynamics of number psychophysics remain qual-
itatively the same in the two cases. But, importantly, the spatial encoding model additionally
predicts that the capacity to remember the locations of objects should significantly influence (if not
entirely determine) the capacity to estimate quantities.

We ran two experiments to test whether the model was able to predict both participants’ ability
to remember the spatial positions of objects and their estimates of quantity. The first experiment
was a change-localization task to test spatial memory; the other was a numerical estimation task.
In both experiments, we manipulated the exposure duration of the displays. We fit the model to
human data in both tasks and found that the model was able to capture the key psychophsyics of
both tasks, including: how participants’ ability to remember objects’ locations changed as a function
of the number of objects and the exposure duration; how participants’ numerical estimates were
biased as a function of time; and the cutoff between subitizing and estimation as a function of time.
We also found that the inferred capacity limit for remembering objects’ spatial locations is nearly
identical to the inferred capacity limit for numerical estimation. Moreover, the two capacity limits
track very closely over time for numerosities in the range 1-15 and the model closely fits human
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data in both of these tasks.
In sum, we are able to recover the key properties of numerical cognition in an entirely non-

numerical visual task using a visual model; moreover, the patterns of noise and bias in estimation
align precisely with the noise inherent to spatial memory, indicating that the psychophysics of
number are attributable to perceptual uncertainty rather than number-specific processing. Our
results indicate, therefore, that the defining features of numerical cognition can be understood as
downstream consequences of basic visual processing, posing a challenge to theories that assume
the psychophysics observed in estimation are the result of number-specific processing via one or
more “number systems.” While there must exist some number-specific processing—quantity must be
extracted from visual memory—our findings indicate that Weber’s law, subitizing, under-estimation
and other effects observed in numerical estimation are not the direct result of that processing.

Conclusion
There are two broad themes in this thesis. The first is in finding common functional and mechanis-
tic origins of number psychophysics that have historically been treated as separate phenomena. For
instance, people’s exact representation of small sets (Burr et al., 2010; Choo & Franconeri, 2014;
Feigenson et al., 2004; Jevons, 1871; Revkin et al., 2008) but increasingly imprecise representation
of larger sets (Dehaene, 2011; Xu & Spelke, 2000) has been explained as arising from different
representational systems (Dehaene, 2011; Feigenson et al., 2004). Our results show that this dis-
continuity is actually an efficient representation of number given a limited information capacity
under a single system. The second broad theme is in demonstrating that numerosity perception
cannot be viewed separately from general perceptual processing. We found that visual numerosity
perception is strongly tied to visual fixations, which determine the bias and precision of estimates.
We also found that the psychophysics of number are largely driven by domain general visual pro-
cessing — specifically, uncertainty about where objects are in space — and that subitizing, Weber’s
law, underestimation, and other effects can all be understood as consequences of a limited capacity
to represent objects in space. Together, the work in this thesis sheds light on the origins of various
puzzling psychophysical phenomena that have been the source of interest and debate for over 150
years (Jevons, 1871).
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